
oo
I—1

I—I

on
_J
Of

AD 7|c7yi

REPORT NO. 1718

DYNAMiC STORAGE ALLOCATION FOR

THE BRLESC M COMPUTER

Morton A. Hirschberq

May 1974

Approved for public release; distribution unlimited.

IIQA RAI I IQTIP DCQCADrU I ADHDATnDICC \j~/ri binLLi «J i i \j htjLnhvi i knuui\niui\iuj
ADconccM ottr^\/iKin rtor\i IMP» HADVI Akin

HAS ♦• Trtv frKi r ■«» A .■* *^ ••»+• uh nvt A ♦■ ^ <? »^ /-* lnn/tAi L/V-OI.XWJ U-IJ^IO X&IJV/AW BUCH X U XO 1IU lUllgvj

Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

A t\t\ i ♦ 1 i-»irt ol ^^/^T»-i AC- r\C ^K i e v^nA »t «MA.. VIA *-%V\4- ninA#1 nuui.bj.vuai WU/LIXWO \j x mio lupvn luaj wc uutam^u

from the National Technical Information Service
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fWien Dal« Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

BRL REPORT NO. 1718

2. GOVT ACCE55ION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

DYNAMIC STORAGE ALLOCATION FOR THE BRLESC II
COMPUTER

5. TYPE OF REPORT ft PERIOD COVERED

FINAL
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«;

Morton A. Hirschberg

B. CONTRACT OR GRANT NUMBERfa)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USA Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

US Army Materiel Command
5001 Eisenhower Avenue
Alexandria, VA 22304

12. REPORT DATE

MAY 1974
13. NUMBER OF PAGES

32
14. MONITORING AGENCY NAME A ADDRESS(tf different from Controlling Office) 15. SECURITY CLASS, (of this report)

un\.unuun 11,1;

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (0/ thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 30, If different horn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverie side It necessary and Identify by Mock number;

Dynamic Storage Allocation List Processing List Manipulation
Dynamic Storage Free Storage Random Access
Linked List Automatic Random Access
Datasets Data Manipulation

20. ABSTRACT (Continue on reverse aide It necessary and Identify by block number)

The use of dynamic storage allocation for the BRLESC II computer is
described, as well as the use of linked lists. This system was fashioned
after the dynamic storage scheme used in SIMSCRIPT. Some of the SIMSCRIPT
names being quite descriptive have been used here.

DD (J
FORM

AN 73 1473 EDITION OF 1 NOV «5 IS OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

IJNf.l.ASSTFTFn

SECURITY CLASSIFICATION OF THIS PAOEfHTien Dalm Bntmnd)

IIMPT «„_ T cicn — iiiitfw; i i i in
SECURITY CLASSIFICATION OF THIS PAOEfWh»n Dmtm Entmrmd)

TA ni p nv rnwTPMT«;

Page

I. INTRODUCTION 5

II. SYSTEM DESCRIPTION 6

A. Storage Allocation 6

B. Lock Numbers for Datasets 7

C. Lists 7

III. SYSTEM UTILIZATION 8

A. Initialization 8

B. Dataset Creation and Release 9

C. List Manipulation 10

D. Lock Number Manipulation 14

E. Accessing Data Within Datasets 14

F. Dataset Manipulations 15

U. 0/3LC1IL I\CS111V.1.1UI13 . . j.3

H. Sample Program 16

iv. SI^ICM i.mi'L.nr'inmrti JLUIN 20

A. General Purpose Utility Subroutines 20

B. System Blank Common 22

C. System Subroutines 23

APPENDIX A - List of System Subroutines 25

APPENDIX B - Sv«t«n E"r"TO"r Messages and Debuepine Aids. . . 27

ACKNOWLEDGEMENTS 29

GLOSSARY OF TERMS 30

DISTRIBUTION LIST 31

T TMTDOmirTTnM X • 1111 l\VUUU X IVll

This report describes a dynamic storage allocation system for the
BRLESC II computer. Dynamic storage allocation is the automatic assign-
ment and release of storage during execution. It differs from conven-
tional programming by eliminating the necessity of requiring storage
of many seldom-used arrays. Dynamic storage allows the programmer to
make more efficient use of available storage, even to the extent of
reducing the requirements for chain or overlay jobs.

The system comprised of over forty FORTRAN subroutines called by a
user programmer is fashioned after the dynamic storage scheme used in
SIMSCRIPT (a simulation language). Some of the SIMSCRIPT function
names being quite descriptive have been carried over into this system.

peripheral storage, linked list capability, and garbage collection.

Automatic overflow is from high speed memory to the disc, which
appears to the user as an extension of high speed memory. No special
programming is required to make use of it, although the programmer has
the option to write data onto the disc if he so desires.

A linked list is one such that some of its elements are themselves
lists. Lists are composed of datasets (storage cells containine
related information), which are the basic information unit of the system.
A dataset may itself become a list or several linked together to form a
list. Datasets in use are located in core storage, those not in use,
are transferable to the disc. The system automatically transfers unused
datasets to the disc when their space is required by other datasets.
The system does allow the user to lock a dataset in core storage so that
it may not be transferred to the disc; however, this feature should be
used with descretion or an early termination could occur. There is no
limit as to the number of datasets which may be created, or to the
number of lists to which a dataset may belong. The system does not
however determine to which lists a dataset belongs. Because of this, it

_ i ^ _ i is the users responsibility to insure mat a aatasex Deiongs tu au USLS
when a dataset release request is made.

Datasets may be any length and need not belong to a list (if they
provide temporary storage for intermediate calculations). The system
allows a dataset to be placed anywhere within a list or placed in order
according to a specified sort word in the dataset. List searching
routines exist to locate particular datasets in the list. Lists may be
searched from top to bottom or bottom to top. More rapid access to
datasets appearing on lists in also available and will be described in
Section III. C. 16.

Garbage collection is the process by which storage may be reclaimed
for a newly created dataset by sweeping through memory identifying only

those structures currently referenced by the program. This occurs only
after all free storage has been depleted. Garbage collection is time
consuming but frees the programmer from performing detailed bookkeeping
which would otherwise be necessary.

The Dynamic Storage Allocation System resides on the BRL DISC and
may be accessed through the *COMPILE card as follows:

♦COMPILE DISC, DAS, ALL

Dynamic storage systems have been written for many computers, how-
ever, this particular system is easily tranferable to computers whose
computer word length is at least 60 bits (i.e. CDC computers).

Dynamic storage allocation has found widespread use in time and
event based simulation programs although the latter usage is more
frequent. Proposed uses of dynamic storage include large problems with
fixed databases having infrequently used subsets. Serial or linear
data processing may render greater efficiency to dynamic storage,
although careful thought is required in any large database program.
Dynamic storage is applicable for any queuing problem.

II. SYSTEM DESCRIPTION

A. Storage Allocation

The user may designate available storage to occupy from one to ten
storage units. The first of these is assumed to be core storage. The
user must specify the length available to the system. Excluding user
code, the system including the disc routines require 10,000 words.
Currently, the system uses only one other unit besides core storage, the
disc. Approximately 600,000 words are available to the user without
special handling.

The system sets up storage requested on each unit as a free block
and links the blocks together to form a free list. When a block is
requested, the free list is searched until a free block of adequate size
if found. The necessary storage is then allocated from the lower portion
of this block, and the remainder made into a smaller free block. When
storage is returned to the system, it is added to an adjacent free block,
or if this is not possible, it is added to the free list as a separate
block.

When a request is made for a block larger than any free block, a
garbage collection is initiated in an attempt to relocate datasets within
memory so that all free blocks are brought together to form one free
block. If this procedure does not produce enough storage for the
requested block, a search is made for a block which can be moved to the
disc. Movable datasets are written onto the disc and their space made
available to the free list. If space still cannot be found, a message
is written and execution terminated. Garbage collection only occurs
for core storage.

B, Lock Numbers for Patäsets

The system determines whether a dataset is movable or not by
examining the lock number of the dataset. Lock numbers range from
0 to 7. Lock numbers from Ö through 5 are assigned by the user to
datasets he creates.

MEANING

Ö Unlocked. May be moved to provide room for a newly
requested dataset.

1 Locked and currently in use. Will not be moved until
it is no longer in use.

2-4 Locked. Will not be moved for any reason. User may
set these levels for his own purposes. The system
does not distinguish between levels 2-4,

Locked and indestructible. It will not be moved or
released to the system.

Free.

Special system designated datasets for storage of

C. Lists

A list is a set of logically associated datasets connected by
means of system-created link words. Lists are used as a means to quickly
locate datasets sharing common attributes. A dataset may belong to any
nuifiuer of lists.

1. List Header Variable

A list header variable is one word stored within a dataset,
locally, or in user common. This variable allows the user to refer
to the list. It must be defined. The contents of this variable point
to the first and last link words in the list.

The link word contains the address of the next link word
of the list (or zero if the link is the last dataset of the list) ,
the address of the previous link word of the list (or zero if the
linK is the first uataset of the listj, anu the address of the dataset
pointer (DSP word). One such word exists for each dataset in the list.

3, Dataset Pointer (DSP word).

The DSP word contains the current address of the dataset and
the number of words in the dataset. One such word exists for each data-
set.

III. SYSTEM UTILIZATION

I» Common Variables» The user must define certain necessary system
variables in blank common and assign values to these variables. To see
the necessary dimension, equivalence, and integer statements as well as
the common definition, refer to the sample program given in Section
III.H. The following system variables must be assigned initial values
by the user's program.

DMARFA TV,,

the system. The value to use here is 2
indicating core storage and the disc.

QWAREA The size in words of the ith storage unit
(i.e. core storage = 5000, disc storage =
50,000). QWAREA is a one dimensional integer
o-Y>t*nir r\-C -4-n*-> -^ 1 ~™~«+-~ A4- DnT ~«1.. . 1« 1
Olio; WJ. LCJI CXC1I1C11L3. rtL DI\Li, Uli i. y WUI'US i

and 2 of this array need be set. Word 1
is for core storage, and word 2 for the disc.

QDSIZE A one dimensional integer array specifying the
incremental size of datasets. This array
consists of 10 elements. At least one
specification must be made (it may be zero).

For example: QDSIZE(l) = 5
QDSIZE (2) = 10
QDSIZE (3) = 0

The above statement indicates that no
dataset will be smaller than 5 words;
datasets with requested sizes from 1-4
words will automatically be allocated
5 words (one location is required by the
system as a zeroth word). Dataset requests
of lengths 5-9 will be allocated 10 words,
ftl" C ValllPC TmiQl" n£* acci tmo^ -in oc /-^on^-i r\ n

order. When a value of zero is assigned,
this implies that the exact number of words
required will be allocated. In the above
example any dataset request for 10 or more
words will be allocated the exact number
of words necessary.

8

QERLUN The logical variable containing the unit number
of the device to be used to print system error
messages. At BRL, QERLUN should be set to 6.

A 1- r\ cat
2. Subroutine QINITL After blank common has been set, the
ist call QINITL to initialize other system variables an

ur> the free list,

B. Dataset Creation and Release

Three subroutines exist for the creation of datasets, and one for
the release of datasets. Tne first three routines discussed below

Subroutine CREATE

CREATE (N, INDEX) where
N = integer expression
INDEX = integer variable name

V_op<x\~c

al lnra^pd df*nf>T,d';: lrnrm tVi p ynlnp«; ascirniprl to thp ODST7.R arravl _ Thf»

dataset INDEX (pointer to the first word of the dataset) is returned
as the value of the second argument. CREATE sets the lock value of
the dataset to zero (unlocked) and creates a DSP word, indicating that
the dataset will be part of a list.

2. Subroutine CREATL

CREATL (N, INDEX)

CREATL performs the same functions as the subroutine CREATE except
that the lock number is set to 1 (locked). The definitions of N and
INDEX are the same as for subroutine CREATE.

CREATX fN. INDEX!

CREATX creates a dataset of length N+l (regardless of the limits
specified by the QDSIZE array) and sets the lock value to 1. No DSP
word is created, indicating that the dataset is not part of any list;

._i_ _ i.e. tne dataset is intended ror use as a temporary storage area. ine
At* -PA -rt A 4- A s\-*\ <- s\£ XT nnJ TMTM3 V o -**<-i 4-U^ r> *-.rrt^. n^ -C-* -** fnkw/Mif A »t ^ PDCA TC UC11111L1UH3 vi ^ ajiu IINULJA axe cue ocunc as lux ouuiyunuc ^i\j_.rv i i- •

T VTrsr^vr

4. Subroutine DSTROY

DSTROY (INDEX)

This subroutine returns the space allocated to the dataset whose
INDEX is the argument specified. This subroutine does not modify any
list linkages to which this dataset may be a part. The user must do
thi <z wi th a nail nf BPMTIVF CCQQ Co^+inr! TTT f 1J ^

C. List Manipulation
— i -■■■■■ ^h^,—. —^— i..

These subroutines allow the user to create, modify, or destroy
lists.

PUTTOP (LIST, INDEX) where
LIST = variable name
INDEX = integer variable name.

This subroutine places the dataset INDEX (supplied by CREATE,
CREATL or CREATX) as the first dataset of the list indicated by the
list header variable LIST. The list header variable may be thought
Oi as a j.ist namej it contains tue auuresses Oi tue iirst anu last
link words in the list. If the list already contains datasets, the
dataset will be inserted as the first dataset and list linkages will
be changed wherever necessary to reflect this modification,

2. Subroutine PUTBOT

PUTBOT (LIST, INDEX)

DirrrnD av^o-^-t

named dataset is inserted as the last dataset in the list.

3. Subroutine PUTORA

PUTORA (LIST, INDEX, N) where
LIST = variable name
INDEX = integer variable name

PUTORA inserts dataset INDEX into list LIST according to the
value of the work N within the dataset. The dataset will be inserted
such that it follows the dataset, if any, which has a lesser value
in its Nth word position, and precedes the dataset, if any, which
has a greater value in its Nth word position. In other words, PUTORA
creates a list sorted in ascending order according to some word within

The VaiUc Oi tn6 WOTu fiiUSt i

10

4. subroutine PUiuiA

PUTOIA (LIST, INDEX, N)

PUTOIA functions in the same manner as PUTORA except that the value
in the Nth word position is an integer value.

5. Subroutine PUTORD

ruiuiU) ^LUl, XiNUCA, Li)

PUTORD functions in the same manner as PUTORA except that the
dataset INDEX is inserted such that the values in the Nth word position
are in descending order. The value in the Nth word position is a real
value.

6. Subroutine PUTOID

PUTQID (LIST, INDEX, N)

PUTOID functions in the same manner as PUTORD except that the
value in the Nth word position is an integer value.

7. Subroutine PUTAFT

PUTAFT (LIST, LINK, INDEX 1, INDEX 2) where
LIST = variable name
LINK = variable name
INDEX 1 = integer variable name
INDEX 2 = integer variable name

PUTAFT allows the user to insert dataset INDEX 2 into the list
1TCT o-P-«-0-~ 4-V,0 A„-t-n^a-t- r-^^^A £1 n A 1,,r TMnCV 1 TV. « 1 ■; „1, ^o-^nma-t-^-« I TMV uxi_>i ai uci uu^ uauaoci spctincu uy LI*UI-,J\ X. IIIC xxuiv uaiamcL^i UIJII\

contains the contents of the link word for the dataset specified by
INDEX 1.

8. Subroutine PUTBEF

PUTBEF (LIST, LINK, INDEX 1, INDEX 2)

PUTBEF functions similarly to PUTAFT except that the dataset
specified by INDEX 2 is placed before the dataset specified by INDEX 1.

9. Subroutine NEXT

NEXT (LINK, INDEX) where
LINK = variable name
INDEX = integer variable name

u

NEXT allows the user to search forward through a list. The link
parameter LINK must initially be set to the value of the list header
variable. After NEXT has been executed, the link variable contains
the contents of the current link word. The variable INDEX is returned
as the index of the next dataset in the list or zero if no further
uaua^cus aic uu uuc 1131.1 ly^Jii-cti use ui III^AI is as luiiuws.

KLINK = KFILE
10 CALL NEXT (KLINK, INDX)

Tr CTMnv nr\ r\\ rr\ T1/"» 1 r\
ir ^II>IUA. cy. \j) \JU IU ^U

(OPERATIONS ON DATASET INDX)

GO TO 10

20 CONTINUE

NEXT also sets and resets lock numbers of datasets. If the
lock number of the current dataset is 0, it is reset to 1 to indicate
that the dataset is currentlv in use. The lock value of the previous
dataset is set to 0 if it was 1, indicating that the dataset is no
longer in use. Datasets with lock numbers greater than 1 are not set
and reset but remain locked throughout the execution of the subroutine.

The set-reset feature is provided so that there is no possibility
that a dataset will be moved if the loop performing the search contains
MltUkll^^ J. .1. O L.— ^V/ai^llJ.UK -LV^iyLS, Ul VfVlik.UJ.JIJ JUUL±I1VJ \,UllJ.llg AUJ bllky

creation of new datasets.

10. Subroutine NEXTNL

NEXTNL (LINK, INDEX)

MCVTMT J?.... A4. £ Ä—. « ^„ 4.U A «„«« •«„_...«... «« XICVT «.,«^...4. 4-1. „4- 4-U A 1NCA11\L J.UI1CC J-UIl^ J-Il Cilt; Quillt; IHcULIlCL cti INKA! CALCpL LlldL LUC

lock values 3.TC not set snei Teset.

11. Subroutine PREV

PREV (LINK, INDEX)

PREV functions in the same manner as NEXT except that the list
is searched backward beginning with the last dataset in the list.

12. Subroutine PREVNL

PREVNL (LINK, INDEX)

PREVNL functions in the same manner as PREV except that lock

12

13. Subroutine REMOVE

REMOVE (LIST, LINK, INDEX)

REMOVE removes the dataset INDEX from list LIST, The link parameter
LINK is the link word as returned by NEXT. NEXTNL, PREV, OR PREVNL.
After removing the dataset, REMOVE replaces the value of the link parameter
with the previous link word so that a NEXT or NEXTNL loop may be con-
tinued. If the link value is not available to the user at the time he
wishes to remove a dataset from a list, the value of 0 may be used as a
link parameter. In this instance, the link parameter will not be updated.

REMOVP fLIST. LINK. INDEX")

REMOVP functions in the same manner as REMOVE except that, for
LINK^O, the next link toward the bottom of the list is returned as the
value of the link parameter (for continuation of a PREV or PREVNL loop),

WIPOUT (LIST, KDSTRY) where
LIST = variable name
KDSTRY = integer expression

WIPOUT removes all datasets from the list LIST (list header
variable). If the value of KDSTRY is one, the datasets will be
destroyed as well as removed from the list.

16„ Subroutines DSPWRD and INDWRD

These routines provide access to a dataset more rapidly than
using a sequential search. It involves storing DSP word addresses of
those datasets for which quick access is desired.

ui^wRu (_J.INUDA, lLioKWDj wnere
T\TrM~? V — i n4-nnn-n nivi n^l a T-I O m t
11NUCA - J-llUCgCi vaiiauic Rolui

IDSPWD = variable name

DSPWRD returns the location of the DSP word for dataset INDEX in
the variable specified by IDSPWD. A DSP word for a dataset resides
in the same memory location throughout the existence of a dataset. By
storing the location of the DSP word for the dataset at the time it is
created, the current index of the dataset may be retrieved as follows:

13

INDWRD (IDSPWD,INDEX)

INDWRD returns the current index INDEX of the dataset whose DPS
word address is stored in IDSPWD. If the dataset is currently located
on the disc, it is loaded into core storage and the index then returned.

D. Lock Number Manipulation

1. Subroutine LOCKDS

LOCKDS (INDEX, LOCKNR) where
INDEX = integer variable name
LOCKNR = integer expression

> sets the lock number of da!
specified by LOCKNR, an integer value< 5.

2. Subroutine NLOKDS

NLOKDS (INDEX)
NLOKDS unlocks dataset INDEX.

o.

LOCKFL (LIST, LOCKNR)

LOCKFL sets the lock number for each dataset in list LIST (list
header variable) to the value specified by LOCKNR (<5).

4. Subroutine NLOKFL

NLOKFL (LIST, LOCKNR)

NLOKFL unlocks all datasets in the list LIST (list header variable)
which have a lock number less than or equal to the value of LOCKNR
(an integer <5).

ED Accessing Data Within Datasets

The last variable in blank common is the one-dimensional, one
element array Q. This word is the first word of the core storage area
reauested bv the user* the rest of the area follows in contiguous
locations. Because the compiler does not check for subscript references
larger than those defined, Q allows the user to refer to any word within
a dataset. The dataset index refers to the position of the first word
of the dataset within the array Q. To refer to the first word of data
within a dataset specify:

7 A

0 (INDEX)

To refer to the Nth word, specify

n CTMncv l J.M*\

To allow reference to real and integer values as well as using
two subscripts rather than one, the IQ(1), QQ(1,1), and IQQ(1,1)
variables are all made equivalent to the variable Q(l). To use the
two dimensional forms specify the index as the first subscript and the
position of the particular word within the dataset as the second sub-
script. For example, to refer to the 5th word of the dataset whose
index is INDX specify:

QQ (INDX,5).

In the interest of program readability another method of referring
to dataset values is available. This is accomplished by the user
equivalencing variables to the Q array» The eauivalence block must
appear in all routines which refer to the dataset. It will be noted
that one dimension is added to each variable to account for the dataset
index. This limits those variables which can be referred to through
equivalent forms to two-dimensional variables.

F. Dataset Manipulations

1. Subroutines DSLNTH

DSLNTH (INDEX, LENTH)

DSLNTH returns the length LENTH of dataset INDEX. LENTH does not
include the zeroth word.

2. Subroutine DSXPND

DSXPND (INDEX, NULNTH)

DSXPND expands dataset INDEX to accommodate NULNTH + 1 words.
If free storage exists below the dataset, it is given to the dataset.
If not, a new block is created and the data transmitted to it. The
old dataset is destroyed, but its DSP word is kept for the new dataset.

3. Subroutine PUTDRM

PUTDRM (INDEX)

PUTDRM writes dataset INDEX onto the disc.

G. System Restrictions

Blank common other than that defined for system use may not be
used by the user's program.

The following variable names are reserved and may not otherwise
be used by those routines which need system blank common:

QNAREA
QWAREA
QFREHD
QNLNKS
QZSIZE
QNZBLK
QZHEAD
QCOUNT

QDSIZE
QNSIZE
QLUNIT
QFBITS

Q
IQ
QQ
IQQ

The follwoing are system subroutine reserved names

H.

BITX PREV QFLDST
CREATE PREVNL QGCBLK
CREATL PUTAFT QGDBLK
CREATX PUTBEF QGRBAG
DSADMP PUTBOT QGTZWD
DSLNTH PUTDRM QINITL
DSPWRD PUTOIA QPTZWD
DSTROY PUTOID QZBLOK
DSXPND PUTORA RDRUM
INDWRD PUTORD REMOVE
LISPRT PUTTOP REMOVP
LOCKDS QCEASE RITEA
LOCKFL QCREAT RITEF
NEXT QDSRED RITEI
NEXTNL QDSRYT RITEO
NLOKDS QDSTRY UNPX
NLOKFL QERROR WDRUM
PACX QFIELD WI POUT

XMIT

Sample Program

This section contains a payroll update program example using all
of the system features, though not all of its subroutines.

Problem:

1. Read in the following employee data.

a. Employee number
b. Employee name
c. Salary
d. Job assignment data

2. For some of the above employees the following update information.

a. Employee number
b. New salary

16

3« Prepare a list of em.nlovees highest salary first with employee
number, name and salary.

The following pages contain a listing of the program cards, the
input data, and the output.

ONARFA niVARFAfim nFRFHD ONDTST DNT.NKS

r

C

C

c
c

COMMON
1 QZSIZE. QNZBLK, QZHEAD, QCOUNT(30). QDSIZE(IO).
2 QNSIZE', QLUNIT(IO), QERLUN, QFBITS(2* 10),
3 Q(D
DIMENSION IQ(1). 00(1.1). 100(1, 1)
EQUIVALENCE (Q('l) , IQ,QQ,IQQ), (QCRSIZ, QWAREA(l))
INTEGER QNAREA, QWAREA, QFREHD, QNDTST, QNLNKS, QZSIZE,

1 QNZBLK, QZHEAD, QCOUNT, QDSIZE, QMODLK, QNSIZE, QLUNIT,
2 QFIELD, QERLUN, QFBITS, QCRSIZ

DIMENSION NTEMP (2) TEMP (12)

 THE FOLLOWING IS AN EQUIVALENCE BLOCK FOR USE IN
 REFERRING TO THE DATA IN THE EMPLOYEE INFORMATION
 DATASET.

cmiTUAi c\irc f r\ f i ■* cimumi fr\r-~i~\ \T K\IT^"\ r r\ r A\ CAT* n\/"\

I mro WDk-nATi
NAMF.fl.21. SAI.ARYm. WRKDATM . 3 -4") " v. - j — j 7 — v.- J j — --- \ — j — J 'J DIMENSION EMPLNR(l),

INTEGER EMPLNR, WRKDAT

 INITIALIZE SYSTEM. HIGH SPEED MEMORY STORAGE SIZE
C IS 5000 WORDS, AND DISC SIZE IS 50000. NO
C MINIMUM SIZE OF DATASETS.

QNAREA = 2
QWAREA(1) =
QWAREA(2) =
QDSIZE(1) =
QLUNIT(1) =
QERLUN = 6
CALL QINITL

5000
50000
0
20

r

nr t Pi T\T HAVTinn« T-> » #T^ T J"»\ r T-» r-> iTin«nnn
KEHLI UN Ivi^AXFlUM EMKUJIEE NUMBER.
T^ri/nn RATACCT nr TUIT T CXICTLJ rnn

WORD ADDRESSES

IOKEAIE A

17

i moMATn 101

CALL CREATL (NREMPL, INDDSP)
C
C READ EMPLOYEE DATA. fONE EMPLOYEE AT A TIME)
C

10 READ 2, JFLAG, NEMPL, (NTEMP(I),1=1,2), SALRY, (TEMP(I),1=1,12)
2 FORMAT (A6, 14, 2X, 2A10, 2X, F10.2, 2X, 1212)

IF (JFLAG .EQ. 6HENDDAT) GO TO 20

C CREATE DATASET OF 16 WORDS AND STORE DATA
C

CALL CREATE (16, INDEX)
EMPLNR (INDEX) = NEMPL
CALL XMIT (2, NTEMP, NAME(INDEX,1))

SALARY(INDEX) = SALARY
CALL XMIT(12, TEMP, WRKDAT(INDEX, 1,1))

C
C OBTAIN DSP WORD OF DATASET AND STORE IN INDDSP
C DATASET

CALL DSPWRD(INDEX, IQQ(INDDSP,NEMPL))
GO TO 10

r

C READ IN SALARY UPDATE INFORMATION
C

20 READ 3, JFLAG, NEMPL, SALRY
3 FORMAT(A6, 14, 2X, F10.2)

IF(JFLAG *EQ, 6HENDDAT) GO TO 30
C
C FIND DATASET ADDRESS USING DSP WORD

CALL INDWRD(IQQ(INDDSP,NEMPL), INDEX)
SALARY (INDEX) = SALRY
GO TO 20

C
C PREPARE LIST OF DATASETS ORDERED HIGHEST SALARY
C FIRST cOR OUTPUT PURPOSES. ZERO OUT LIST HEADER.

30 LSTSAL = 0
DO 40 J = 1,NREMPL
IDSP = IQQ(INDDSP, J)
IF(IDSP .EQ. 0) GO TO 40
CALL INDWRD (IDSP, INDEX)

C
C ORDER ON 4TH WORD, REAL DATA, IN DESCENDING ORDER

CALL PUTORD (LSTSAL, INDEX, 4)
40 CONTINUE

18

c
c

KKJL1N1 UU1 U51,
re \rr\T nrrccc ADV

ILLUSTRATION)

irnrn fnur
U3EU ^iniD

c
c
c

CnDMATC*1 1 um'in 1 y_ ± MD MAMC QAISDV*//! J1I\« uni'iLi I.JIVUIH\ i I I J

LINK = LSTSAL
50 CALL NEXTNL (LINK. INDEX)

IF(INDEX .EQ. 0) GO TO 60
PRINT 5, EMPLNR(INDEX), (NAME(INDEX,J), J=l,2), SALARY(INDEX)

5 F0RMAT(I15, 2X, 2A10, F10.2)
CALL REMOVE (LSTSAL, LINK, INDEX)
OAT T -nrrrtnv /"T^inrvl

RELEASE STORAGE USED BY INDDSP DATASET.

60 CALL DSTROY(INDDSP)

CALL EXIT
END

TV. « i?«. 1 1 Ä. . X —. — ^ ,. « 14^4- rt.i? 4- U ^ -I «-,,,+- ,-.,-,-« ,4 ^- 4-rt. 4-1-. rt r- nmr\ 1« «-« *-n-r-V* *1 W
1IIC IU1J.UW J-Ug J-^ <* J.ÜL U.L LUC llipUL Lcll U^ LU U11C SdlllU/J.C piUgl dill«

75 NUMBER OF TOTAL COMPANY EMPLOYEES
1 —J

I /
\ K n/MT A K

AAKU1N , A. A
A -i r\ r\ r
41U.UD

0 0
^ 0 /lie nn

48 CREEK, S, ANTONIO 623,20
8 HEART, B. 438.35

39 KILOWATT, R. 766.05
3 MAYER, M.G. 912.15

24 PINKHAM, L 1170.32
16 RASPUTIN, I ÖUD.5U

58 SMITH 608.50
12 TRUEHEART, T. i?ifi ■*■*

65 VAN PELT,'LUCY 701.16
47 ZWICK, Z. 607.11

ENDDAT

12 1350.05
16 815.50

3 835.10
8 450.25

28 416.10

ENDDAT

19

EMPL. NR. NAME

12 TRUEHEART, T.
24 PINKHAM, L.
3 MAYER, M.G.

16 RASPUTIN, I.
39 KILOWATT, R.
f. r W A XT T^T-'TT' Tl Ii^W

A Q
*TU

rowv C AMTHMTH

SALARY

1350.05
1170.32
835.10
815.50
766.05

58 SMITH 608.50
47 ZWICK, Z. 607,11

8 HEART,' B. 450.25
28 BEACH, REDONDO 416.10
17 AARON, A.A. 410.05

IV. SYSTEM IMPLEMENTATION

This section of the paper contains information necessary for the
user to program a dynamic storage job.

A. General Purpose Utility Subroutines

The routines described in this section are called by the system,
however, they are also stand alone routines whose versatility may be
capitalized unon bv the user for debugging and or other purposes,

1. Subroutines BITX and UNPX
RTTY fYlfPDM TT IT WODnCI

BITX takes bits II through JJ of WORDS and stores them into XKERN
filling the rest of XKERN (if any) with zeros. Bits are numbered with
the right end of the word being bit 1 and the left end bit 60. JJ must
not be greater than 11+59 (i.e. not more than one word wide). Bits may
be taken from at most two consecutive words. For example:

TAT T BTTYrYIICC ITT 101 Ufl

would cause bits 2 through 60 of word W(3) and bit 1 of W(4) to be placed
into word XUSE.

UNPX is an entry in subroutine BITX and functions exactly
does -

?n

2. Subroutine PACX

PACX (XKERN, II, JJ, WORDS)

PACX takes JJ-II+1 bits from the right end of XKERN and packs them
into bits II through JJ of WORDS, leaving the rest of WORDS undisturbed.
JJ must not be greater than 11+59 (i.e. not more than 1 word wide).
PACX undoes what BITX does.

3. Subroutine RDRUM

RDRUM(LUN, TOWORD, NWORDS, IADRES)

RDRUM reads NWORDS (1 word records) from the disc beginning with
disc address IADRES into core location beginning with TOWORD. LUN is
not used.

4„ Subroutines RITEF, RITEI, RITEA, AND RITEO

RITEF (IALPHA, DATA, NUMBER)

RITEF prints one word IALPHA of BCD identification and DATA(I)
words of information where I runs from 1 to NUMBER using a G20.7 format.

RITEI functions as RITEF except that DATA is printed with an 110
format»

RITEA functions as RITEF except that DATA is printed with an A10
format.

RITEO functions as RITEF that DATA is printed with an 025 format.

5. Subroutine WDRUM

WDRUM(LUN, FRMWRD, NWORDS, IADRES)

WDRUM writes NWORDS (1 word records) onto the disc with disc
address beginning at IADRES starting from core location FRMWRD. LUN
is not used.

6. Subroutine XMIT

XMIT (N,A,B)

XMIT is a core to core transmission subroutine. If N is positive,
N words are transferred from array A to array B. If N is negative,
the variable A(l) is placed in cells B(l), B(2), ... B(N).

21

B» Svstem Blank Common

The following variables are in the system blank common area:

QNAREA*
QWAREA(IO)'
QFREHD**
r*\T T\rrc T

ONLNKS

QZSIZE
QZHEAD
QC0UNT(30)

The number of dataset storage areas.
Word size of each dataset storage area.
Header variable for the free block list.

T -rt ö-v -i t- 1
J-1L ^-AX^CCll^-C.

The count of the current number of list links
in existence.
The number of words in a system block.
The header variable for the sytem block.
Counts the number of times system subroutines
have been called:

r\nnt ixrr r I -

"i __TDPATY

(7, --DSTRQY
(4*)—QGCBLK
(5*)—QGDBLK
(6; 1--QGRBAG
(7; --PUTBGT

es; --PUTT0P
f r\

I--NEXT
* _. DCUfH/r

n 1
V ■* * „ I--NEXTNL
fl2 1--PREV
(13*)--PREVNL
(i4; J--PUTAFT
(is;)--PUTBEF
(16)--L0CKDS
(17; i--NLORDS
r -i o~

no --NLQKFL
(20 i— GREAT L
(2i;)--QDSRED (
(22; 1--QDSRYT (
(23' I--REM0VP
(24)--PUT0RD
(25* --PÜTOID
(26 r*t fmAn A
 ru1UKR

r?7 1 DIITflT A

(28* --NOT USED
(29;)--N0T USED
(30 J--N0T USED

(COUNT OF DISC READS)
(COUNT OF DISC WRITES)

zz

QDSIZE(IO)* Minimum dataset size,
QNSIZE** Number of non-zero elements in QDSIZE array.
QLUNIT(IO)* Logical unit numbers of dataset storage areas.
QERLUN Not used.
QFBITS(2,10)** Bit numbers defining extent of data fields used

in packed data words.
Q(l) First location of dataset storage.

00(1.1) Equivalenced to Q.
IQQ(l,i) Equivalenced to Q.

All variables in blank common except Q and QQ are integer variables.

*Variables which must be set by the user.
**Variables which are set by subroutine QINITL.

C. System Subroutines

All system subroutines not accessible to the programmer and ail

characters in length.

All ~w~4.««, U« -fc - — -

svstem vrariahipc in blank common begin with the letter Q and are 6

Subroutines QDSRED and QDSRYT which read and write the disc can
easily be modified to use other storage devices (such as a drum)
should they become available.

23

APPENDIX I
LIST OF SYSTEM SUBROUTINES

The following system subroutines are meant to be accessed by the
user. The following conventions are used to name variables:

LIST -- List header variable
LINK -- Link wnr^
INDEX -- Dataset index
LOCKNR -- Lock number
INDEX 2 -- Dataset index
NWORDS -- Number of words
IDSPWD -- DSP word address
NWORD -- Word number
KUS 1 KI -- n n +- .-. .- ^ 4- A rt *--4--*»i-»-»r*-i,»4 -Plorr

1. Initialization

CALL QINITL

2. Dataset assignment and release

r-Air rnciTE fMiiiriDnc TKTncvl

CALL CREATL (NWORDS, INDEX)
CALL CREATX (NWORDS, INDEX)
CALL DSTROY (INDEX)

3. List manipulations

(.LilOl ,

DttTonT n TCT

CALL
CALL
CALL
CALL
CALL
CALL
CALL
TAT T

CALL
CALL
CALL
CALL
CALL

T\Trvr^v *\
il\UEA)
Twncvi HIULlAJ

INDEX, NWORD)
INDEXE NWORD)
INDEX, NWORD)
INDEX, NWORD)

PUTORA (LIST
PUTOIA (LIST
PUTORD (LIST
PUTOID (LIST
PUTAFT (LIST, LINK, INDEX, INDEX 2)
PÜTBEF (LIST
NEXT (LINK,
NEXTNL (LINK
PREV (LINK.
PREVNL (LINK
REMOVE (LIST
REMOVP (LIST
WIPOUT (LIST

T Tin/ T»TT-wr«\r T\TT\rv *y\
, L11NN, 11NUEA, IHL/EA ^J

INDEX)
INDEX)

INDEX)
:, INDEX)
', LINK, INDEX)
', LINK, INDEX)

KDSTRY)

uaiaoc L- maiL±uuia u J-I/JIO

CALL DSLNTH (INDEX. NWORDS)
CALL DSXPND (INDEX, NWORDS)
CALL PUTDRM (INDEX) ?■;

5. Lock number manipulations

CALL LOCKDS (INDEX, LOCKNR)
CALL NLOKDS (INDEX)
CALL LOCKFL (LIST, LOCKNR)

/*T T r*ri /""ATT \TT r\isr*T
^/\JL.Li INLUNrL, ^Llöl, LUUWNKj

DSP Wn-rr! 1r»/-P-rriin natQcot Tn^av
-U,JV U LI1UWA

CALL DSPWRD (INDEX, IDSPWD)
CALL INDWRD (IDSPWD, INDEX)

The following system subroutines may be used by the user.

UNPX
PACX
RDRUM
RITEF
RITEA
RITEI
RITEO
WDRUM

unpacKs a aata word
ll„„„„l,„ „ J„4-„ .. I
uiipct^i^a a. uctLci wuiu

Reads the disc
Prints labelled list
Prints labelled list
Prints labelled list
Prints labelled list
Writes the disc
Transmits core to cere

The following svstem routines are not meant to be used by the user
(except OINITL) but act as support programs to the svstem.

QCEASE
QCREAT

QDSRED
nncDVT

QERROR
OFIELD

QFLDST

QGCBLK

nrnoi v

OCRBAG
QGTZWD
QINITL
QPTZWD
QZBLOK

Writes error message and terminates
Locates a memory block of proper size for a dataset
create operation
Performs ail reading of datasets from disc
D«-«.crt-»™,- «ii ..».^4.4«« nr J«+-~ *■ ~ *-~ JH»A

Writes error message and returns
A function which calls BITX to unpack data values
from specified word fields.
Calls PACX to pack data values into specified word
fields.
Attempts to find a memory block of specified size by
writing unlocked datasets to the disc
rtttempts to locate an availaule core on trie uisc oi a

Performs parba^e collection
Obtains next available system word
System initialization routine
Returns system word to system availability list
Creates and initializes system availability list

26

APPENDIX II
SYSTEM ERROR MESSAGES AND DEBUGGING AIDS

crrur messa-nes

THP fnlinwinp firrnr mfissaaes are considered non-fatal,
continues but an unusual event has occurred.

Execution

ROUTINE MESSAGE

DSTROY

QDSRED

s\r\ r*r» \r»n

QGCBLK

QGRBAü

ATTEMPT TO DESTROY A WELL-LuCKED Da. /\n attempt to
destroy a dataset with lock number > 5.
CANNOT LOCATE REQUESTED LIST ELEMENT. A call to
PUTAFT or PUTBEF with LINK=0 and the program cannot
locate a link of the list which corresponds to dataset
INDEX.
READ ATTEMPT OUT OF LIMITS. An attempt to read from
a dataset storage address greater than exists.
Possible system error.

cfc-rT»r»-r

message.
UNLOCKED DATASET HAS NO DSP WORD. In the process of
moving unlocked datasets to the disc a dataset with
no DSP word has been encountered. This implies it
belongs to no lists and therefore if moved cannot be
referenced again.
UNLOCKED DATASET HAS NO DSP WORD. See above.
CANNOT LOCATE REQUESTED LIST ELEMENT. A call to
REMOVE (or REMOVP) with LINK=0 has occurred and the
nropram is unable to locate a link of the list corres-
ponding to dataset INDEX.

The following error messages are considered fatal,
terminated after the message is printed.

Execution is

RC

QGCBLK

QGCBLK

nrnm v

QGCBLK CALLED WITH QNAREA=1. Core storage memory
has been filled and no disc storage has been provided
for overflow.
CANNOT GENERATE ENOUGH CORE SPACE. A block of size
NWORDS cannot be fit into core storage after writing
onto the disc. Probably too many locked datasets exist.
NO DISC BLOCK AVAILABLE OF PROPER SIZE, No disc
hinrW larap finouph to hold the datasets to be moved
exists.

27

B. Debugging Aids
■ JMK— W.m ■

The two routines discussed below provide debugging capability to the
system user.

1. Subroutine DSADMP.

DSADMP causes the first NWORDS CO <_'NWORDS <^ 10) of each dataset
to be printed (in octal) as well as the contents of all blank common
cells. The dataset index, the lock number, and the total number of
words in the dataset are also printed. If NWORDS=0 only the blank
common cells are printed.

LISPRT aiST- N1

LISPRT causes the index, number of words, lock numbers and the first
four words to be printed for all datasets in the file specified by LIST
(list header variable). The value of N specifies the list searching
routine to be used:

2 PREV
3 NEXTNL
4 PREVNL

za

ACKNOWLEDGEMENTS

The bulk of the coding* described in this paper was-performed by-
Mr. Ray L. Stone of General Research Corporation, Santa Barbara,
California.

The technique of referencing dataset contents with FORTRAN names
through the use of an equivalence block was developed at Compucenters,
Incorporated, by Mr. Jim Wahl.

?
R. L. Stone* A Dynamic Storage Allocation System for h'ortran Programs*
General Research Corporation, IMR-1249, January 1970.

2Q

GLOSSARY OF TERMS

uaL a a ci rv group OJL contiguous computer storage tens
containing related information or fields and
treated as a unit. Also the data stored in
the cells.

DSP Word A word created by the system for each dataset
created to be part of a list. This word contains
the current address of the dataset and the number
of words in the dataset. DSP words are stored in
system createu worus anu upuäteu v~y tue system as

Free Block

Free List

A block of unused storage available for use.

The list of free blocks.

A word created by the system tor each list member
containing tue auuress of the next link word of
+-Vio 1 i c +■ V»Ä T\-r* mri r\i ^ c t-^,4 ■.•F «-li<

the address of the DSP word for the dataset. Link
words are stored in system created blocks and
automatically updated.

A group of logically associated datasets connected
by link words. Successive datasets in a list do
not necessarily occupy adjacent memory blocks.

List Header
Variable
 '] ■ ■"

of the first and last link words in the list. The
variable name provides a means by which the user can
refer to the list.

Lock Number A number ranging from 0 to 7 carried with each
dataset to allow or inhibit movement within storage
areas anu release i.rom m8 sysuem.

Zeroth Word A word allocated by the system for each dataset in
its first memory location. It contains the address
of the DSP word of the dataset, the number of words
in the dataset, and the lock number of the dataset.
The user should not attempt to access this word.

DISTRIBUTION LIST

No. ot
CoplGS J*£

12 Commander
Defense Documentation Center
ATTN: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

i Director
* O *— UX \— l l

Prniprt"; Anpnrv

ATTN: Tech Info Ctr
1400 Wilson Boulevard
Arlington, Virginia 22209

Organization

Commander
U.S. Army Aviation Systems

Command
ATTN: AMSAV-E
12th § Spruce Streets
St. Louis, Missouri 63166

M.S. Armv Air Mobility Research
and Development Laboratory

Ames Research Center
Moffett Field, California 94035

1 Director
Institute for Defense Analyses
tuu rti my -11 a v y unvc

Virginia 22202

1 Director
Defense Intelligence Agency
Washington, DC 20301

1 Commander
u.o.
ATTM

Aiiny Materiel Command
AMCDL

5001 Eisenhower Avenue
Alexandria, Virginia 22333

1 Commander
U.S. Army Materiel Command
ATTN: AMCRD, MG S. C. Meyer

rtVCHUC

AlAvan/^ri o 77\\T>

Commander
U.S. Army Materiel Command
ATTN: AMCRD, Dr.J.V.R.Kaufman
5001 Eisenhower Avenue
Alexandria, Virginia 22333

Commander
U.S. Army Electronics Command
»TTH. AMCCI Dn t\ l ill . rXl'liJLj Li— I\U

Fort Monmouth New -Jersev
07703

Commander
U.S. Army Missile Command
ATTN: AMSMI-R
Redstone Arsenal, Alabama

Commander
U.S. Army Tank Automotive

Command
ATTN: AMSTA-RHFL
Warren, Michigan 48090

U.S. Armv Mobilitv E<"iuir>roent
Research & Development Center

ATTN: Tech Docu Cen, Bldg. 315
AMSME-RZT

Fort Belvoir, Virginia 22060

Commander
U.S. Army Armament Command

U.S. Armv Materiel Command
ATTN: AMCRD-T
5001 Eisenhower Avenue
Alexandria, Virginia 22333

31

DISTRIBUTION LIST

No. of
Copies Organizat :ion

1 Commander
U.S. Army Harry Diamon d

Laboratories
ATTN: AMXDO-TI
Washington, DC 20438

1 Director
National Bureau of Standards
Dpnortmont" /-»-P rnrnmo-^r-o

Washington, DC 20234

Aberdeen Proving Ground

Ch, Tech Lib
Dir, USAMSAA

ATTN: Dr. J. Sperrazza
M— r D „ 1 „ 1'IX . u. UCIXU

Mr. W. Wenger
Dir, USAHEL

ATTN: Dr. J. Weiss
Dr. R. Bauer

Cmdr, USATECOM

32

